

Assessing Cognition in metabolic disease

Dr Andrew Olson

Dr James Blundell, Dr Steven Frisson, Dr Anupam Chakrapani, Shauna Kearney, Dr Suresh Vijay, Professor Anita MacDonald, Professor Paul Gissen, Dr Chris Hendriksz, Dr Saikat Santra

Why cognition?

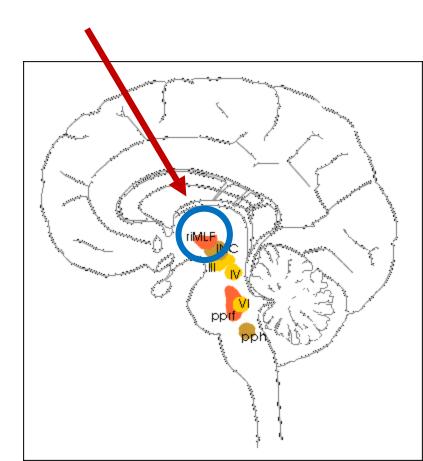
- Important clinical sign
 - Treatment decisions can be influenced by when cognition is to be affected
- Important for a full understanding of behaviour
 - What are the challenges that individuals with disease are likely to face?
- Important for diagnosis, treatment decisions and disease tracking
- Theoretically important for understanding biochemical systems that support cognition

Methodological challenges

- What is the best way to assess neurodegenerative diseases?
 - Limited time with patients (need limited number of assessments)
 - Limited number of patients (need methods that work with small samples)
 - Moving target neurodegenerative diseases in children must be assessed against capacities in controls that are changing

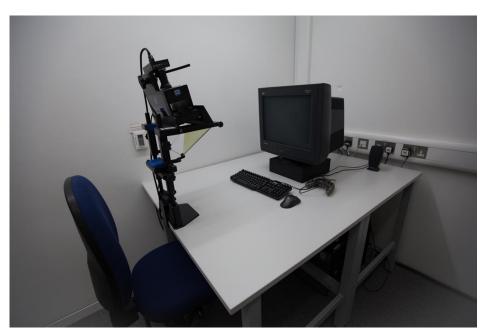
Two brief examples...

- Early signs -- Eye-movements in Niemann-Pick C
- Different profile of abilities affected in different diseases
 - Morquio (MPS-IVa)
 - Tyrosinemia Type III


Diseases

- Niemann-Pick C
 - Lysosomal storage disorder that affects transport of cholesterol.
 - Infant, childhood and adult onset.
 - The earlier onset > more rapid progression
 - Currently treated with miglustat
- Treatment: Miglustat stabilizes disease, but not a cure
 - Expensive
 - Side effects
- Questions:
 - When is the best time to start treatment?
 - When cognitive effects are beginning
 - Before degeneration has gone too far
 - But not before it is needed.
 - How is treatment affecting disease progression?
 - Need sensitive measures

Eye movements in Niemann-Pick


- Characteristic sign: eyemovements slow and then stop
- Vertical movements affected before horizontal
- Caused by damage to very specific brain stem nuclei (riMLF, PPRF)
- Changes are eventually apparent in a bedside neurological exam

Can we detect changes earlier?

- Eye-tracking
 - Measure eye position 1000 times per second
 - Modern eye trackers make this feasible

Simple tasks

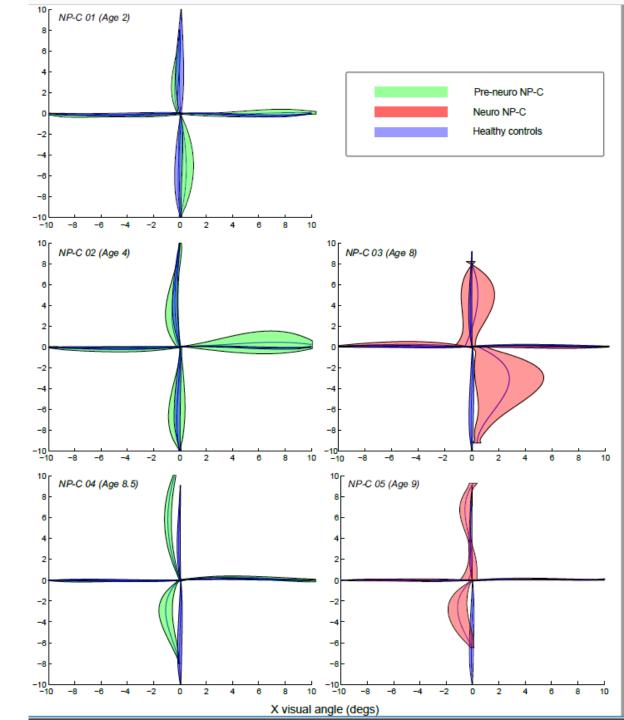
- Saccade look at a target when it moves
- Fixation keep looking at a target until it disappears (sustained attention)
- Memory guided saccade

0

- Target flashes
- DON'T LOOK
- Remember where it was
- On signal, look where target used to be
- Smooth pursuit
 - Follow a moving target around the screen

Two groups of patients

- Already on treatment
- Untreated


Results

			Vertical me					ovements		
	Patient Number	Age (Years)	Neuro Involve ment	Saccade Onset		Saccade Velocity		Saccade Curvature		
				D	U	D	U	D	U	
treated untreated	NP-C 01	2	No	_	-	_	-	-	-	
	NP-C 02	4	No	-	-	-	-	-	-3.19	
	NP-C 04	8.5	No	-	-	-2.37	-	-2.28	-3.26	
	NP-C 03	8	Yes	-2.17	-	-3.1	-2.83	-26.74	-16.37	
	NP-C 05	9	Yes	-	-2.16	-4.11	-3.36	-5.65	-2.6	

- Treated patients show widespread effects
- Untreated patients can have slower saccades and curved saccades

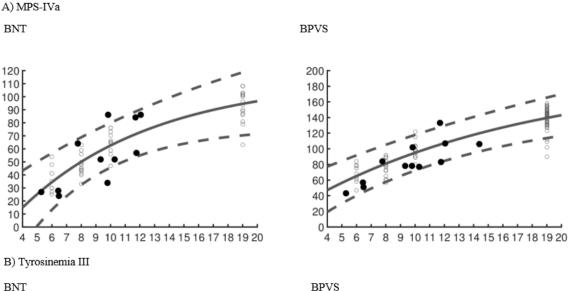
Early signs

- Slowing
- Curvature
- In vertical saccades are early signs

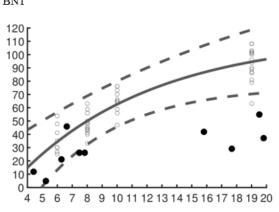
Example 2 – Morquio (MPS-IVa) and Tyrosenimia III

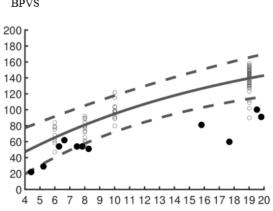
 Tyrosinemia III thought to cause cognitive impairments (e.g. based on treated Tyrosinemia I), but not well documented.

- Morquio not thought to cause cognitive impairments
- Questions: Would there be cognitive changes
- Would different diseases have different profiles?
 - Or would there be homogeneous general decline?


Contrast domains:

 Language – BPVS (receptive) Boston Naming Test (productive)


 Attention – Visual search, Saccade task, fixation tast.


Result -- Language

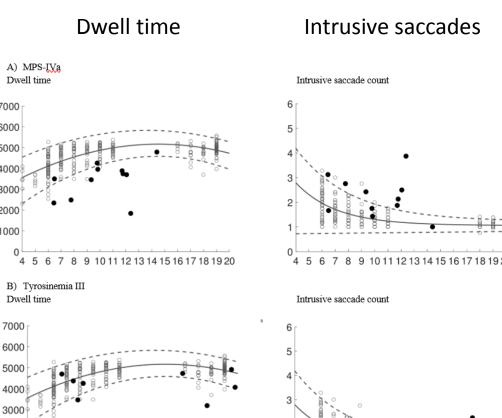
MPS-IVa not affected

Tyrosinemia
III affected
(esp older
individuals)

Result – Sustained attention (fixation task)

7000 6000

3000


1000

6000 5000

2000

MPS-IV clearly affected

Tyrosinemia III mild problems

Tyrosinemia III / Morquio (MPS-IVa)

- Both disease had cognitive effects
- Language clearly affected in Tyrosinemia III
- Both had problems with sustained attention, but this was clearer in Morquio
- Disease profiles were not the same
 - Not homogeneous decline
- Language/sustained attention are good candidates for tracking disease progress or treatment effects (note age-related decline in T3)

Summary

- Cognitive assessment is possible in these groups
- Simplified tasks with variable difficulty
- Special methods for comparing data using developmental trajectories and statistical models
- Profiles across diseases were not uniform
- Best measures are candidates for disease tracking, assessing treatment or diagnosis

Thank you...

- And a special thanks to
- the individuals and families who participated
- the schools who helped with control data
- ESRC, who funded James Blundell's PhD
- The Birmingham Children's Hospital, who provided both financial and practical support
- Actelion Pharmaceuticals, who provided financial support.

